
Abstract. Background/Aim: The hepatoprotective role of various
molecules in drug-induced hepatotoxicity arouses great interest.
We investigated the effect of liposomal curcumin (LCC) on
experimental acetaminophen (APAP)-induced hepatotoxicity.
Materials and Methods: Rats were randomly allocated into 5
groups, and the effect of two LCC concentrations was studied:
group 1 – 1 ml intraperitoneal (i.p.) saline, group 2 – APAP
pretreatment, group 3 – APAP+silymarin (extract of the silybum
marianum with anti-inflammatory, anti-oxidant, and anti-fibrotic
properties), group 4 – APAP+LCC1, group 5 – APAP+LCC2. The
biomarkers of oxidative stress (nitric oxide and malondialdehyde)
and antioxidant status of plasma (thiols and catalase), TNF-α,
MMP-2 and MMP-9 serum levels were evaluated. Results: An
improvement in oxidative stress, antioxidant status, and TNF-α,
MMP-2 and MMP-9 levels was obtained in groups pretreated with
LCC compared to silymarin treatment, in a dose-dependent

manner. Histopathological examination reinforced the results.
Conclusion: Liposomal curcumin improves the oxidative
stress/antioxidant balance and alleviates inflammation in
experimental APAP-induced hepatotoxicity. 

Acetaminophen, also known as paracetamol or N-acetyl-p-
aminophenol (APAP), has anti-inflammatory, analgesic and
antipyretic properties when used in its normal therapeutic doses
(1, 2). It is widely available and can be used by all age groups.
The tendency to use it in high doses for more rapid effects is
the main concern, due to increased risk for acute liver failure
that can be very severe, requiring liver transplantation (1). The
liver is a target for the biotransformation of many drugs;
therefore, liver tissue lesions are commonly associated with
various medications (3). Acetaminophen-related liver toxicity
is reported in many studies and is mainly associated with drug
overdose, genetic factors, concurrent medication, concomitant
alcohol consumption or nutritional status (4). Hepatic tissue
lesions can be very severe, leading to acute liver failure (ALF)
(4). ALF is related to cell death that has been documented to
occur mainly by necrosis, but the apoptotic process can also
have an important contribution (5). Inhibition of caspase
activity (involved in the apoptotic process) proved to promote
liver tissue regeneration and recovery (6).

Mitochondrial dysfunction is one of the mechanisms
involved in hepatic toxicity of APAP, consequently inducing
hepatic cell death (7). Cell response to mitochondrial
dysfunction consists of various deleterious consequences,
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including excessive production of reactive oxygen species
(ROS) (8). Mitochondrial dysfunction has been proven to be
related to a decrease in ATP production, an increase in ROS,
and a decrease in the production of glutathione (GLUT) as a
scavenger molecule for ROS (7). APAP hepatotoxicity is also
related to increased production of reactive metabolite N-
acetyl-p-benzoquinone (NAPQI) as a consequence of the
metabolic activity of the cytochrome P450 system (9). The
metabolite depletes GLUT from liver tissue, decreasing the
cell’s antioxidant defense system (9). GLUT production is
important for the hepatic metabolism of APAP, acting as a
scavenger for NAPQI protein (8). Changes in cellular
enzymatic activity (involved in drug detoxification) can also
cause cellular damage to liver tissue (10). Oxidative stress
and inflammatory reactions were also incriminated in
overdoses of APAP inducing renal toxicity (11). Depletion of
the GLUT pool is another important mechanism that
contributes to APAP hepatotoxicity (12). Hepatic injury is
associated with increased synthesis of matrix
metalloproteinases (MMPs), which are a group of proteolytic
enzymes that can promote extracellular matrix (ECM)
degradation, being a good indicator of liver damage in liver
failure (13). MMPs can also act as regulators of inflammation
and immunity by influencing cytokine and chemokine
production (14). The normal liver expresses several MMPs,
including MMP-2 and MMP-9, which have an important role
in liver vascular homeostasis (15). Increased MMP-9 activity
is associated with extensive leukocyte recruitment in severe
liver injury (16). During their activation at the injury site,
leukocytes can express MMP-9 (responsible for ECM
degradation and for increased vascular permeability due to
cleavage of endothelial junctional proteins) (17, 18).

Thus, the major issues in APAP-induced hepatotoxicity are
to identify potential biomarkers to predict the severity of liver
damage and to develop new therapies able to limit the
extension of injury and promote liver regeneration. Natural
products are attracting the interest of many researchers to study
their effects on various disorders. Among the nutraceutical
compounds commonly appreciated for their antioxidant and
anti-inflammatory properties is curcumin, which can improve
cell viability in various disorders by reducing cell apoptosis
and necrosis (19). The antioxidant activity of curcumin is based
on its scavenging properties for ROS (20, 21). Its anti-
inflammatory effect was reported to be related to the down-
regulation of nuclear factor-kB (NF-kB), cyclooxygenase 2
(COX2) and pro-inflammatory cytokines such as interleukin-1
and interleukin-6 (22). We previously demonstrated the
beneficial effect of oral curcumin administration on hepatic
function in fructose-induced metabolic syndrome and in
myocardial ischemia (23-25). Despite the beneficial effect of
curcumin, the low bioavailability of this natural compound
presents interest for new formulations. Novel nanoformulations
of curcumin are emerging and can enhance its systemic

bioavailability and tissue distribution (26). Among curcumin
nanoformulations, liposomal curcumin offers a better water
solubility of curcumin, leading to 8- to 20-fold increased
systemic exposure compared to the standard curcumin
suspension formulation (27). Liposomal curcumin is a
phospholipid bilayer vesicle that can carry curcumin; it is easy
to prepare and safe to use (28-30).

Silymarin (SIL) is an active component of Silybum
marianum extracts with anti-inflammatory, anti-oxidant, and
anti-fibrotic properties. It contains a family of flavonolignans
and a flavonoid (taxifolin), among which silybin accounts
for 50% to 70% and is identified as the major biologically
active component (31).

The aim of this study was to observe the beneficial effect
of liposomal curcumin administration in two concentrations
and to compare it to the effect of silymarin in APAP-induced
hepatotoxicity in rats. Several biomarkers were assessed and
compared: ALT and AST for hepatic function, oxidative
stress parameters (NO and MDA), antioxidant parameters
(thiols and catalase), inflammatory cytokine (TNF-alpha),
MMP-2 and MMP-9 as biomarkers for ECM degradation. 

Materials and Methods
Animals. Male albino rats (Wistar-Bratislava) were provided by the
Animal Department of the Faculty of Medicine and Pharmacy, Cluj-
Napoca. The animals weighing 200-250 mg were kept in
polypropylene cages, each group in a separate cage, at a constant
temperature (24±2˚C) and 60±5% humidity, in a 12/12 h light-dark
cycle. Unrestricted access to food (standard pellets from
Cantacuzino Institute, Bucharest, Romania) and water was provided.
Prior to blood sample collection, the animals were fasted overnight.
The experimental protocol was approved by the Ethics Committee
of “Iuliu Hatieganu” University of Pharmacy, Cluj-Napoca,
Romania (No 16/20.05.2019), and complied with the rules of the
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Table I. The levels of the investigated markers of liver damage (ALT
and AST) and inflammation (TNF-α) in each treatment group, expressed
as mean and standard deviation.

Group AST (mg/dl) ALT (mg/dl) TNF-α
abbreviation mean (STD) mean (STD) mean (STD)

C                                    30.14 (3.62)            34.28 (2.69)       0.39 (0.05)
APAP                          505.14 (25.03)      789.71 (44.85)       4.47 (0.38)
APAP+S                      112.71 (14.39)           414 (17.99)       3.71 (0.28)
APAP+LCC1                84.57 (7.89)        218.37 (19.17)       2.94 (0.21)
APAP+LCC2                72.14 (6.03)        180.57 (20.49)       1.72 (0.3)

C: Control; APAP: acetaminophen administration; APAP+S: APAP and
silymarin administration as pretreatment; APAP+LCC1: APAP and
pretreatment with 1 mg/100 g of body weight (bw) LCC; APAP+LCC2:
APAP and pretreatment with 2 mg/100 g bw LCC; Std: standard deviation;
AST: aspartate aminotransferase; ALT: alanine aminotransferase; TNF-α:
tumor necrosis factor alpha.



European Convention for the Protection of Vertebrate Animals used
for Experimental and other Scientific Purposes. 

Experimental design. In this study, five groups of 7 rats each were
used as follows: Group 1 - control group - intraperitoneal (i.p.)
administration of 1 ml saline solution 0.9%; Group 2 - i.p.
administration of APAP [a single dose of 250 mg/kg body weight
(bw)] after 16 h of fasting (32, 33); Group 3 - APAP+silymarin
(silymarin (100 mg/kg bw) was administered i.p. once per day for
5 consecutive days before APAP administration) (34); 

Group 4 - APAP+LCC1 - i.p. – 1 mg/100 g bw; Group 5 -
APAP+LCC2 - i.p. – 2 mg/100 g bw.

LCC1 and LCC2 pretreatments were performed 30 min before
APAP administration.

Substances. Liposomal curcumin was encapsulated in long-
circulating liposomes at a concentration of 4.7 mg/ml, using the film
hydration method with a lipid molar ratio of 9.5:0.5:1 (1,2-
dipalmitoyl-sn-glycero-3-phosphocholine:1,2-distearoyl-sn-glycero-
3-phosphoethanolamine-N-[amino(polyethylene glycol)-2000]-
DPPC:PEG-2000-DSPE:CHO) as previously described (35, 36).
The proposed formulation had appropriate quality attributes for i.p.
administration, such as monodisperse size around 140 nm and zeta
potential of about -50 mV. Silymarin and the substances used for
biochemical determinations were purchased from Sigma-Aldrich
(St. Louis, MO, USA). Quantitative assessment of TNF-α was
performed using the ELISA technique according to the
manufacturer’s instructions (kit purchased from Signosis Inc., Santa
Clara, CA, USA). For the quantitative determination of rat matrix
metalloproteinases 2 and 9 (MMP-2, MMP-9), we used an ELISA
kit according to the manufacturer’s protocol (Elabscience
Biotechnology Inc., Houston, TX, USA). 

Blood collection and assessment of serum markers for oxidative
stress/antioxidant status, transaminases, TNF-α, MMP-2 and
MMP-9. Blood samples were collected at the end of the
experiment (24 h) from the retro-orbital plexus of each animal,
under ketamine anesthesia (5 mg/kg bw, i.p. route) (37), and
biochemical measurements were used for serum aspartate
aminotransferase (AST) and alanine aminotransferase (ALT). The
oxidative stress parameters were measured according to Tsikas for
indirect assessment of NOx and according to Janero for MDA
determinations (38, 39). Antioxidant parameters, catalase and
thiols, were assessed as previously described (40, 41). At the end
of the experiment, the animals were euthanized [by ketamine
overdose – intramuscular (i.m.) route]. Spectroscopic
measurements were performed using a Jasco V-350 UV-VIS
spectrophotometer (Jasko International Co, Ltd., Japan) for all
biochemical analyses. TNF-α and MMP measurements were made
using the ELISA method with an ELISA plate reader (DAS,
Rome, Italy). 

Histopathological analysis. The livers were collected and fixed in
10% formaldehyde solution. Subsequently, they were paraffin
embedded and sectioned at 5 μm, stained with hematoxylin-eosin
and examined for histological changes using a light microscope. The
graded lesions were subjectively classified as absent, moderate and
severe, according to the presence of lesions.

Statistical analysis. The results were expressed as mean±standard
deviation for each group. Differences between groups were
compared for the degree of oxidative/antioxidant parameters, ALT,
AST levels, TNF-α, MMP-2, and MMP-9 levels, using Man-
Whitney test. Statistix 10 software was used and differences were
considered significant at p<0.05.
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Figure 1. The levels of ALT between the APAP group and the control group were significantly different (p<0.01). The same results (p<0.01) were
obtained from the comparison of the APAP group with APAP+S, APAP+LCC1 and APAP+LCC2 groups, and for the comparison of different
pretreatments (APAP+S with APAP+LCC1 and APAP+LCC2). LCC1 and LCC2 pretreatments yielded also statistically significant differences with
p<0.05. C: Control; APAP: acetaminophen administration; APAP+S: APAP and sylimarin administration as pretreatment; APAP+LCC1: APAP and
pretreatment with 1 mg/100 g bw LCC; APAP+LCC2: APAP and pretreatment with 2 mg/100 g bw LCC.



Results

Treatment of rats with APA resulted in hepatoxicity as
indicated by the increase, compared to control, in ALT
and AST, markers of liver damage, and TNF-α, marker of

inflammation (Table I, Figures 1-3). In addition, after
induction of hepatotoxicity, the oxidative stress
parameters (NOx and MDA) were also significantly
(Mann-Whitney test p<0.002) increased (Table I, Figures
4 and 5) as well as matrix metalloproteinases MMP-2 and
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Figure 2. The levels of AST between the APAP group and the control group were significantly different (p<0.01). The same results (p<0.01) were
obtained from the comparison of the APAP group with APAP+S, APAP+LCC1 and APAP+LCC2 groups, and for the comparison of different
pretreatments (APAP+S with APAP+LCC1 and APAP+LCC2). LCC1 and LCC2 pretreatments yielded also statistically significant differences with
p<0.05. C: Control; APAP: acetaminophen administration; APAP+S: APAP and sylimarin administration as pretreatment; APAP+LCC1: APAP and
pretreatment with 1 mg/100 g bw LCC; APAP+LCC2: APAP and pretreatment with 2 mg/100 g bw LCC.

Figure 3. The levels of TNF-α were significantly different between the APAP group and the control group (p<0.01). Similar results (p<0.05) were
obtained for the comparison between APAP+S, APAP+LCC1 and APAP+LCC2 groups. C: Control; APAP: acetaminophen administration; APAP+S:
APAP and sylimarin administration as pretreatment; APAP+LCC1: APAP and pretreatment with 1 mg/100 g bw LCC; APAP+LCC2: APAP and
pretreatment with 2 mg/100 g bw LCC.



MMP-9 (Table I, Figures 6 and 7). However, a significant
decrease in the antioxidant capacity, quantified by thiols
and catalase, was observed after APAP administration
(Table I, Figures 8 and 9). 

Effect of LCC1 and LCC2 pre-treatment on the levels of
transaminases. 

Pretreatment of rats with silymarin significantly (p<0.01)
decreased ALT and AST levels following APAP administration
(Figures 1 and 2). Furthermore, if the animals were pre-treated
once with LCC, both ALT and AST levels were significantly
(p<0.01) reduced compared with the APAP group (Figures 1
and 2). When comparing the hepatoprotective effect of the
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Figure 4. NOx value showed statistically significant differences in all the comparisons (p<0.001). C: Control; APAP: acetaminophen administration;
APAP+S: APAP and sylimarin administration as pretreatment; APAP+LCC1: APAP and pretreatment with 1 mg/100 g bw LCC; APAP+LCC2: APAP
and pretreatment with 2 mg/100 g bw LCC.

Figure 5. The levels of MDA were statistically significantly different at the level of p<0.01, when comparing C with APAP; APAP with APAP+S,
APAP+LCC1 and APAP+LCC2, and at the level of p<0.05 when comparing APAP+S with APAP+LCC1 and APAP+LCC2; APAP+LCC1 and
APAP+LCC2. C: Control; APAP: acetaminophen administration; APAP+S: APAP and sylimarin administration as pretreatment; APAP+LCC1:
APAP and pretreatment with 1 mg/100 g bw LCC; APAP+LCC2: APAP and pretreatment with 2 mg/100 g bw LCC.



combination of silymarin with two liposomal curcumin
concentrations, we observed an even more significant (p<0.01)
decrease in AST and ALT levels compared to silymarin
treatment alone, showing better improvement in hepatic cell
function. Both doses of LCC were compared. The lowest
values of AST and ALT were obtained with the high dose
LCC2 (Figures 1 and 2, p<0.05). 

Effect of LCC1 and LCC2 pre-treatment on inflammation.
TNF-α level was significantly (p<0.01) decreased is rats
pretreated with the combination of silymarin with two doses
of LCC (Figure 3), showing the anti-inflammatory effect of
both substances during liver damage. Both doses of LCC
were more efficient in decreasing inflammation than
silymarin (p<0.05), however, the higher dose of LCC2 was
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Figure 6. The levels of MMP-2 were significantly different between all compared groups (p<0.01) except between the LCC1 pretreatment group
and the LCC2 pretreatment group p<0.05. C: Control; APAP: acetaminophen administration; APAP+S: APAP and sylimarin administration as
pretreatment; APAP+LCC1: APAP and pretreatment with 1 mg/100 g bw LCC; APAP+LCC2: APAP and pretreatment with 2 mg/100 g bw LCC.

Figure 7. The levels of MMP-9 were statistically significantly different between all compared groups (p<0.01). C: Control; APAP: acetaminophen
administration; APAP+S: APAP and sylimarin administration as pretreatment; APAP+LCC1: APAP and pretreatment with 1 mg/100 g bw LCC;
APAP+LCC2: APAP and pretreatment with 2 mg/100 g bw LCC.



more efficient than LCC1 in decreasing the levels of TNF-α
(p<0.05) (Figure 3). 

Oxidative/antioxidant balance after LCC1 and LCC2
treatment. Oxidative stress markers induced by APAP
administration were significantly decreased if the animals pre-

treated with silymarin or LCC (Figures 4 and 5). The most
significant decrease was observed for NOx, with a p<0.001
(Figure 4). Pre-treatment with LCC had a stronger effect than
silymarin on reducing oxidative stress, as showed by the
significant (p<0.05) decrease in MDA (Figure 5) and even
more significant (p<0.001) decrease in NOx (Figure 4). The
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Figure 8. The levels of thiols, an antioxidant parameter, were statistically significant different at the level of p<0.01 when comparing C with APAP;
APAP with APAP+S, APAP+LCC1 and APAP+LCC2, and at the level of p<0.05 when comparing APAP+S with APAP+LCC1 and APAP+LCC2;
APAP+LCC1 and APAP+LCC2. C: Control; APAP: acetaminophen administration; APAP+S: APAP and sylimarin administration as pretreatment;
APAP+LCC1: APAP and pretreatment with 1 mg/100 g bw LCC; APAP+LCC2: APAP and pretreatment with 2 mg/100 g bw LCC.

Figure 9. The levels of CAT, an antioxidant parameter, were statistically significant different at the levels of p<0.01 when comparing C with APAP;
APAP with APAP+S, APAP+LCC1 and APAP+LCC2, and at the level of p<0.05 when comparing APAP+S with APAP+LCC1 and APAP+LCC2;
APAP+LCC1 and APAP+LCC2. C: Control; APAP: acetaminophen administration; APAP+S: APAP and sylimarin administration as pretreatment;
APAP+LCC1: APAP and pretreatment with 1 mg/100 g bw LCC; APAP+LCC2: APAP and pretreatment with 2 mg/100 g bw LCC.



effect of LCC was dose-dependent and the higher dose had a
stronger effect (p<0.05 for MDA and p<0.001 for NOx).

The antioxidant capacity was evaluated by measuring
thiols and catalase. APAP administration resulted in reduced
anti-oxidant capacity, which was reversed upon pre-treatment
with silymarin or LCC; thus, significantly increased levels
of thiols (p<0.01, Figure 8) and catalase (p<0.01, Figure 9)
were observed in the treated groups. LCC pre-treatment
reversed the antioxidant capacity to a higher level than
silymarin (p<0.05 for thiols and catalase). The higher dose
of LCC (LCC2) was the most effective in restoring
antioxidant activity (p<0.05 for both thiols and catalase,
when compared to LCC1). 

Effect of LCC1 and LCC2 pre-treatment on MMP-2 and
MMP-9. As shown above APAP treatment resulted in the
activation of MMP-2 and MMP-9. This effect was
significantly reduced (p<0.01) if the animals were pre-treated
with silymarin or LCC (Figures 6 and 7). LCC had a
significant (p<0.01) better effect in lowering both MMP-2
and MMP-9 levels than silymarin. The values of MMP-2 and
MMP-9 reached those of the control group in the group
treated with the highest dose of LCC (LCC2) (Figure 6 with
p<0.05 for MMP-2 and Figure 7 with p<0.01 for MMP-9).     

Histology assessment. In group 2 of animals, a large number
of hepatocytes showed hydropic degeneration. Hepatocytes
around the centrilobular venule (zone 3 of the hepatic acinus)
were affected in high numbers. In zone 2 of the hepatic
acinus, cells in various hydropic degeneration stages were
found, among which cells with discrete signs of granular
degeneration were interspersed (Figure 10). In group 3 of

animals, lesions were less extensive; in zone 2 of the hepatic
acinus, the number of hepatocytes with hydropic
degeneration was reduced (Figure 11). In group 4 of rats,
lesions had a predominantly granular appearance and mainly
intersected hepatocytes in zone 2 of the hepatic acinus. In
zone 3 of the hepatic acinus, hepatocytes had
agranulovacuolar degeneration appearance (Figure 12). In
group 5 of animals, the number of cells in zone 3 of the
hepatic acinus with granulovacuolar degeneration appearance
was further reduced compared to group 4. In zone 2 of the
hepatic acinus, the majority of hepatocytes showed discrete
granular degeneration and only in some places the
degenerative appearance was more pronounced. In zone 1 of
the hepatic acinus, degeneration seemed to be at an earlier
stage compared to the other zones of the acinus (Figure 13).

Discussion 

Liposomal curcumin effect on hepatic function and oxidative
stress/antioxidant balance in APA-induced hepatotoxicity.
Administration of an overdose of APAP resulted in
destruction of hepatocytes and elevation of serum ALT and
AST levels (Table I; Figures 1 and 2). Transaminase
elevations are the most commonly used biomarkers for
hepatocyte lesions. Hepatocyte destruction results from
depletion of GLUT, a component of the liver antioxidant
system, and from increased oxidative stress due to hepatic
metabolism of APAP (42). Administration of APAP caused a
dose-dependent depletion of hepatic GLUT (that plays a
protective role against APAP overdose) (43). APAP is also
oxidized by cytochrome P450 to a reactive metabolite, which
can cause liver lesions (44). This mechanism leads to
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Figure 10. Liver group 2, hematoxylin-eosin staining, 40X ob; 1 – zone
1 of the hepatic acinus; 2 – zone 2 of the hepatic acinus; 3 – zone 3 of
the hepatic acinus.

Figure 11. Liver group 3, hematoxylin-eosin staining, 40X ob; 1 – zone
1 of the hepatic acinus; 2 – zone 2 of the hepatic acinus; 3 – zone 3 of
the hepatic acinus.



mitochondrial oxidative stress, increased mitochondrial
membrane permeability and hepatic cell death (45).
Mitochondrial oxidative stress is considered to be the main
cellular dysfunction in APAP-induced liver injury (46). In
our study, the levels of oxidative stress molecules (NOx and
MDA) significantly increased after APAP administration
(250 mg/kg) (Table II, Figures 4 and 5). Similar results were
reported by other authors, thus, the suggested mechanism is
APAP-induced activation of endothelial nitric oxide synthase
(eNOS) and inducible nitric oxide synthase (iNOS) in
hepatocytes (47). Other authors have reported that APAP can
induce liver injury via an oxidative stress mechanism caused
by increased MDA production (48). Besides GLUT, which
has been proven to be depleted by APAP overdose, a
decrease in other antioxidant molecules could change the cell
oxidant/antioxidant balance. A significant reduction of thiol
and catalase levels was obtained after APAP administration
(Table II; Figures 8 and 9). Global protein sulfhydryl levels
have been reported to decrease significantly starting one hour
after APAP overdose, and slowly decreased after 24 h (49).
This fact may provide a new insight into studying novel
therapeutic molecules that can provide hepatoprotection; one
of the mechanisms could be represented by improving the
level of thiols. Improving catalase levels in experimental
APAP-induced hepatotoxicity could also provide a new
approach for hepatoprotection strategies (50). Therefore,
modulation of oxidative stress/antioxidant balance could be
the target of nutraceuticals used to provide a
hepatoprotective effect. One of the most studied natural
compounds for its antioxidative properties is curcumin. We
have already demonstrated the beneficial effect of orally
administered curcumin on hepatic function and on oxidative

stress/antioxidant balance in experimental fructose-induced
metabolic syndrome in rats (51). In this study, after APAP-
induced hepatotoxicity challenge, the elevation in plasma
ALT, AST, and oxidative stress molecules was ameliorated
by pretreatment with nanoformulation of curcumin
(lipososmal curcumin). We also obtained better results with
LCC pretreatment compared to silymarin and a dose-
dependent effect LCC, where a higher dose (LCC2) had
higher efficiency (Table I and II; Figures 1-5, 8, 9). The
hepatoprotective effect of LCC could be linked to its already
proven inhibitory effect on iNOS activity (52) and MDA
production (51) as well as its ability to maintain the thiol
pool (53) and to improve catalase production (54). In
addition to mitochondrial oxidative stress, many other
cellular processes, including inflammation, microcirculatory
dysfunction and extracellular matrix degradation, have been
shown to be involved in the pathogenesis of APAP-induced
liver injury (46, 55).

Liposomal curcumin effect on pro-inflammatory cytokine
TNF-α in APAP-induced hepatotoxicity. In APAP
hepatotoxicity, increased oxidative stress results in DNA
fragmentation followed by an inflammatory reaction and
production of pro-inflammatory cytokines (5). One of the
most representative pro-inflammatory cytokines associated
with hepatic liver injury is TNF-α (56). TNF-α is produced
in response to liver injury induced by APAP overdose (57).
Activated liver macrophages (Kupffer cells) are the main
cells responsible for TNF-α production that further mediates
hepatocyte necrosis (58). Our study observations (Table I;
Figure 3) are in agreement with other studies that have
reported an increase in TNF-α in APAP-induced
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Figure 12. Liver group 4, hematoxylin-eosin staining, 10X ob; 1 – zone
1 of the hepatic acinus; 2 – zone 2 of the hepatic acinus; 3 – zone 3 of
the hepatic acinus.

Figure 13. Liver group 5, hematoxylin-eosin staining, 10X ob; 1 – zone
1 of the hepatic acinus; 2 – zone 2 of the hepatic acinus; 3 – zone 3 of
the hepatic acinus.



hepatotoxicity (57, 59, 60). A possible mechanism is the
enhancement of an intense inflammatory reaction that
includes TNF-α increase through oxidative stress (61). TNF-
α and other pro-inflammatory cytokines can initiate the
pathological changes following APAP overdose (62), which
were also observed in our study (Table I, Figure 3). TNF-α
is an important cytokine that can trigger the apoptosis
cascade through activation of the caspase-dependent
apoptosis mechanism (63). Continuous release of TNF-α
during inflammation may rapidly lead to necroptosis and
necrosis through an unknown mechanism (62). Multiple
studies have demonstrated the role of curcumin in TNF-α
modulation (63-65), but not as a liposomal formula. Our
study demonstrated the hepatoprotective effect of both LCC
concentrations in reducing the serum levels of TNF-α in
APAP-induced hepatotoxicity (Table I, Figure 3). Both LCC
concentrations were more efficient than silymarin
pretreatment (Table I, Figure 3). TNF-α reduction was also
demonstrated by oral curcumin administration or by other
curcumin nanoformulations (66-68). The liposomal
formulation of curcumin can enhance its anti-inflammatory
properties through down-regulation of TNF-α due to its
higher bioavailability, and a better distribution in therapeutic
concentration at the injury site (69).

Liposomal curcumin effect on MMP-2 and MMP-9 in APAP-
induced hepatotoxicity. Significantly higher levels of MMP-
2 and MMP-9 were observed following APAP
administration (Table III; Figures 6 and 7). Both LCC1 and
LCC2 reduced the MMP-2 and MMP-9 with LCC2 having
the stronger effect, when compared with APAP+S group
(Table III; Figures 6 and 7). Increased serum MMP levels
have been shown to be associated with hepatocellular

damage, contributing to hepatic microcirculation
dysfunction and facilitating the arrival of leukocytes at the
injury site (70). MMP-2/MMP-9 inhibition has been proven
to reduce parenchymal and microvascular injury through
minimizing endothelial injury (70). After liver contusion,
some authors have reported an enhancement of MMP-2 at
6 h, with a peak at 24 h, then a gradual reduction with
normalization of the levels after 7 days (71). ECM
degradation by MMP is added to the hepatic
microcirculation disturbances caused by NOx excess (72).
Intracellular damage induced by APAP overdose is
amplified by increased MMP and elicits a robust
inflammatory response with the release of pro-inflammatory
cytokines that will attract more neutrophils at the injury site
(73). After the endothelial injury, accumulated neutrophils
together with MMP will contribute to liver injury, but also
to liver regeneration after the lesion stimulus ceases (73). It
is important to mention that MMPs have an important
physiological role in the liver. MMPs are produced by
various cells such as Kupffer cells, hepatocytes,
cholangiocytes and, in normal amounts, can control
inflammation and fibrosis in hepatic tissue (74). Based on
these findings and on our results, we consider that the
excess of MMP-2 and MMP-9 contributes to the increase of
oxidative stress and to the propagation of inflammation,
amplifying the hepatic cytolysis process. Similarly to our
results, other studies have reported a reduction in liver
lesions by down-regulation of MMP production (75-78).
Curcumin suppression of MMP expression has also been
reported by other studies (79-80), but our findings proved
that the liposomal formulation of curcumin can have
beneficial effects in improving oxidative stress/antioxidant
balance and inflammation in hepatotoxicity induced by
APAP in rats. To our knowledge, this is the first report
regarding the hepatoprotective effects of a liposomal
formulation of curcumin.
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Table II. Levels of the investigated markers of oxidative stress and
antioxidant parameters in each treatment group, expressed as mean and
standard deviation.

Group NOx MDA THIOLS CAT
abbreviation (μmol/l) (nmol/ml) (mg/dl) (U/ml)

mean mean mean mean 
(STD) (STD) (STD) (STD)

C                       25.85 (1.06)    1.88 (0.18)  524.28 (52.23)       19 (1.93)
APAP                     57 (3.5)    21.72 (1.18)  122.42 (9.5)      11.42 (1.04)
APAP+S              42.8 (2.49)  13.55 (1.25)  190.42 (12.75)  12.22 (1.05)
APAP+LCC1    36.57 (2.29)    9.32 (0.93)  227.42 (19.8)    14.82 (0.66)
APAP+LCC2      32.5 (2.57)      7.1 (0.62)  286.28 (14.43)  16.13 (0.75)

C: Control; APAP: acetaminophen administration; APAP+S: APAP and
silymarin administration as pretreatment; APAP+LCC1: APAP and
pretreatment with 1 mg/100 g bw LCC; APAP+LCC2: APAP and
pretreatment with 2 mg/100 g bw LCC; Std: standard deviation; NO: nitric
oxide; MDA: malondialdehyde; CAT: catalase.

Table III. Metalloproteinase levels in each treatment group.

Group MMP-2 (ng/ml) MMP-9 (ng/ml)
abbreviation mean mean 

(STD) (STD)

C                                                  85 (8.98)                       19.85 (2.19)
APAP                                    192.28 (17.76)                     60.28 (3.45)
APAP+S                               126.57 (11.45)                      36.85 (4.22)
APAP+LCC1                        103.85 (8.25)                       29.57 (2.63)
APAP+LCC2                          88.42 (9.55)                       23.28 (2.21)

C: Control; APAP: acetaminophen administration; APAP+S: APAP and
silymarin administration as pretreatment; APAP+LCC1: APAP and
pretreatment with 1 mg/100 g bw LCC; APAP+LCC2: APAP and
pretreatment with 2 mg/100 g bw LCC; Std: standard deviation; MMP-2:
matrix matalloproteinase-2; MMP-9: matrix metalloproteinase-9.



Conclusion

Despite all studies performed so far, there are very few therapy
choices for liver injuries. This study provides a new perspective
for therapeutic strategies to alleviate hepatic lesions related to
APAP overdose. Our results provide evidence that liposomal
curcumin can exert a protective effect against APAP-induced
hepatotoxicity by reducing NOx and MDA production,
improving thiol and catalase levels, and reducing the serum
concentration of TNF-α, MMP-2 and MMP-9. Therefore,
liposomal curcumin formula may be a promising therapy for
APAP-induced liver injury, with beneficial effects on
associated oxidative stress and inflammation.
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